Спектр излучения белых светодиодов. Светодиоды для растений, спектр светодиодных ламп

Полосе с максимумом в области жёлтого (наиболее распространённая конструкция). Излучение светодиода и люминофора, смешиваясь, дают белый свет различных оттенков.

Энциклопедичный YouTube

    1 / 5

    ✪ Короткие белые светодиоды

    ✪ White LED vs Red Blue White LED Grow Test - Amazon Lights (Intro)

    ✪ Cool White Vs Neutral White LED"s In Flashlights (Thrunite TN12 Models)

    ✪ White LED vs Red/Blue LED Grow light Grow Test - Part 1 (Educational) 2016

    ✪ White LED vs Red Blue White LED Grow Test w/Time Lapse - Lettuce Ep.1

    Субтитры

История изобретения

Первые полупроводниковые излучатели красного цвета для промышленного использования были получены Н. Холоньяком в 1962 году. В начале 70-х годов появились светодиоды жёлтого и зелёного цвета свечения. Световой выход этих, в то время ещё малоэффективных, устройств к 1990 году достиг уровня в один люмен . В 1993 году Сюдзи Накамура , инженер компании Nichia (Япония), создал первый синий светодиод высокой яркости. Практически сразу появились светодиодные RGB устройства, поскольку синий, красный и зелёный цвета позволяли получить любой цвет, в том числе и белый. Белые люминофорные светодиоды впервые появились в 1996 г. В дальнейшем технология быстро развивалась, и к 2005 году световая отдача светодиодов достигла значения 100 лм/Вт и более. Появились светодиоды с различными оттенками свечения, качество света позволило конкурировать с лампами накаливания и ставшими уже традиционными люминесцентными лампами. Началось использование светодиодных осветительных устройств в быту, во внутреннем и уличном освещении .

RGB-светодиоды

Белый свет может быть создан путём смешивания излучений светодиодов различного цвета. Наиболее распространена трихроматическая конструкция из красного (R), зелёного (G) и синего (B) источников, хотя встречаются бихроматические, тетрахроматические и более многоцветные варианты. Многоцветный светодиод, в отличие от других RGB полупроводниковых излучателей (светильники , лампы , кластеры) имеет один законченный корпус, чаще всего аналогичный одноцветному светодиоду. Светодиодные чипы располагаются рядом друг с другом и используют одну общую линзу и отражатель . Поскольку полупроводниковые чипы имеют конечный размер и собственные диаграммы направленности , такие светодиоды чаще всего имеют неравномерные угловые цветовые характеристики . Кроме того, для получения правильного соотношения цветов зачастую недостаточно установить расчётный ток , поскольку световая отдача каждого чипа неизвестна заранее и подвержена изменениям в процессе работы. Для установки нужных оттенков RGB светильники иногда оснащают специальными регулирующими устройствами .

Спектр RGB светодиода определяется спектром составляющих его полупроводниковых излучателей и имеет ярко выраженную линейчатую форму. Такой спектр сильно отличается от спектра солнца, следовательно индекс цветопередачи RGB светодиода невысок. RGB-светодиоды позволяют легко и в широких пределах управлять цветом свечения путём изменения тока каждого светодиода, входящего в «триаду », регулировать цветовой тон излучаемого ими белого света прямо в процессе работы - вплоть до получения отдельных самостоятельных цветов.

Многоцветные светодиоды имеют зависимость световой отдачи и цвета от температуры за счёт различных характеристик составляющих прибор излучающих чипов, что сказывается в незначительном изменении цвета свечения в процессе работы . Срок службы многоцветного светодиода определяется долговечностью полупроводниковых чипов, зависит от конструкции и чаще всего превышает срок службы люминофорных светодиодов.

Многоцветные светодиоды используются в основном для декоративной и архитектурной подсветки , в электронных табло и в видеоэкранах .

Люминофорные светодиоды

Комбинирование синего (чаще), фиолетового или ультрафиолетового (не используются в массовой продукции) полупроводникового излучателя и люминофорного конвертера позволяет изготовить недорогой источник света с неплохими характеристиками. Самая распространённая конструкция такого светодиода содержит синий полупроводниковый чип нитрида галлия , модифицированный индием (InGaN) и люминофор с максимумом переизлучения в области жёлтого цвета - иттрий -алюминиевый гранат, легированный трёхвалентным церием (ИАГ). Часть мощности исходного излучения чипа покидает корпус светодиода, рассеиваясь в слое люминофора, другая часть поглощается люминофором и переизлучается в области меньших значений энергии. Спектр переизлучения захватывает широкую область от красного до зелёного, однако результирующий спектр такого светодиода имеет ярко выраженный провал в области зелёного-сине-зелёного цвета.

В зависимости от состава люминофора выпускаются светодиоды с разной цветовой температурой («тёплые» и «холодные»). Путём комбинирования различных типов люминофоров достигается значительное увеличение индекса цветопередачи (CRI или R a) . На 2017 год уже существуют светодиодные панели для фото- и киносъёмки, где цветопередача критична, но такое оборудование дорого, а производители - единичны.

Один из путей увеличения яркости люминофорных светодиодов при сохранении или даже снижении их стоимости - увеличение тока через полупроводниковый чип без увеличения его размеров - увеличение плотности тока . Такой метод связан с одновременным повышением требований к качеству самого чипа и к качеству теплоотвода. С увеличением плотности тока электрические поля в объёме активной области снижают световой выход . При достижении предельных токов, поскольку участки светодиодного чипа с различной концентрацией примеси и разной шириной запрещённой зоны проводят ток по-разному , происходит локальный перегрев участков чипа, что влияет на световой выход и долговечность светодиода в целом. В целях увеличения выходной мощности при сохранении качества спектральных характеристик, теплового режима, выпускаются светодиоды, содержащие кластеры светодиодных чипов в одном корпусе .

Одна из самых обсуждаемых тем в области технологии полихромных светодиодов - это их надёжность и долговечность. В отличие от многих других источников света, светодиод с течением времени меняет свои характеристики светового выхода (эффективности), диаграммы направленности, цветовой оттенок, но редко выходит из строя полностью. Поэтому для оценки срока полезного использования принимают, например для освещения, уровень снижения светоотдачи до 70 % от первоначального значения (L70) . То есть, светодиод, яркость которого в процессе эксплуатации снизилась на 30 %, считается вышедшим из строя. Для светодиодов, используемых в декоративной подсветке, используется в качестве оценки срока жизни уровень снижения яркости 50 % (L50).

Срок службы люминофорного светодиода зависит от многих параметров . Кроме качества изготовления самой светодиодной сборки (способа крепления чипа на кристаллодержателе, способа крепления токоподводящих проводников, качества и защитных свойств герметизирующих материалов), время жизни в основном зависит от особенностей самого излучающего чипа и от изменения свойств люминофора с течением наработки (деградация). Причём, как показывают многочисленные исследования, основным фактором влияния на срок службы светодиода считается температура.

Влияние температуры на срок службы светодиода

Полупроводниковый чип в процессе работы часть электрической энергии отдаёт в виде излучения , часть в виде тепла . При этом, в зависимости от эффективности такого преобразования, количество тепла составляет около половины для самых эффективных излучателей или более. Сам полупроводниковый материал обладает невысокой теплопроводностью , кроме того, материалы и конструкция корпуса обладают определённой неидеальной тепловой проводимостью, что приводит к разогреву чипа до высоких (для полупроводниковой структуры) температур. Современные светодиоды работают при температурах чипа в районе 70-80 градусов. И дальнейшее увеличение этой температуры при использовании нитрида галлия недопустимо. Высокая температура приводит к увеличению количества дефектов в активном слое, приводит к повышенной диффузии , изменению оптических свойств подложки. Всё это приводит к увеличению процента безызлучательной рекомбинации и поглощению фотонов материалом чипа. Увеличение мощности и долговечности достигается усовершенствованием как самой полупроводниковой структуры (снижение локального перегрева), так и развитием конструкции светодиодной сборки, улучшением качества охлаждения активной области чипа. Также проводятся исследования с другими полупроводниковыми материалами или подложками .

Люминофор также подвержен действию высокой температуры. При длительном воздействии температуры переизлучательные центры ингибируются , и коэффициент преобразования, а также спектральные характеристики люминофора, ухудшаются. В первых и некоторых современных конструкциях полихромных светодиодов люминофор наносится прямо на полупроводниковый материал и тепловое воздействие максимально. Кроме мер по снижению температуры излучающего чипа, производители используют различные способы снижения влияния температуры чипа на люминофор. Технологии изолированного люминофора и конструкции светодиодных ламп, в которых люминофор физически отделён от излучателя, позволяют увеличить срок службы источника света.

Корпус светодиода, изготавливаемый из оптически прозрачной кремнийорганической пластмассы или эпоксидной смолы, подвержен старению под воздействием температуры и со временем начинает тускнеть и желтеть, поглощая часть излучаемой светодиодом энергии. Отражающие поверхности также портятся при нагреве - вступают во взаимодействие с другими элементами корпуса, подвержены коррозии. Все эти факторы в совокупности приводят к тому, что яркость и качество излучаемого света постепенно снижается. Однако, этот процесс можно успешно замедлить, обеспечивая эффективный теплоотвод.

Конструкция люминофорных светодиодов

Современный люминофорный светодиод - это сложное устройство, объединяющее много оригинальных и уникальных технических решений. Светодиод имеет несколько основных элементов, каждый из которых выполняет важную, зачастую не одну функцию :

Все элементы конструкции светодиода испытывают тепловые нагрузки и должны быть подобраны с учетом степени их теплового расширения. И немаловажным условием хорошей конструкции является технологичность и низкая стоимость сборки светодиодного прибора и монтажа его в светильник.

Яркость и качество света

Самым важным параметром считается даже не яркость светодиода, а его световая отдача , то есть световой выход с каждого ватта потреблённой светодиодом электрической энергии. Световая отдача современных светодиодов достигает 190 лм/Вт . Теоретический предел технологии оценивается более чем в 300 лм/Вт . При оценке необходимо учитывать, что эффективность светильника на базе светодиодов существенно ниже за счёт КПД источника питания, оптических свойств рассеивателя, отражателя и других элементов конструкции. Кроме того, производители зачастую указывают начальную эффективность излучателя при нормальной температуре, тогда как температура чипа в процессе работы значительно выше. Это приводит к тому, что реальная эффективность излучателя ниже на 5-7 %, а светильника - зачастую вдвое.

Второй не менее важный параметр - качество производимого светодиодом света. Для оценки качества цветопередачи существует три параметра:

Люминофорный светодиод на базе ультрафиолетового излучателя

Кроме уже ставшего распространённым варианта комбинации голубого светодиода и ИАГ, развивается также конструкция на базе ультрафиолетового светодиода. Полупроводниковый материал, способный излучать в близкой ультрафиолетовой области , покрывают несколькими слоями люминофора на базе европия и сульфида цинка, активированного медью и алюминием. Такая смесь люминофоров дает максимумы переизлучения в районе зелёной, синей и красной областей спектра. Полученный белый свет обладает весьма хорошими характеристиками качества, однако эффективность такого преобразования пока невелика. Этому есть три причины [ ] : первая связана с тем, что разница между энергией падающего и излученного квантов при флюоресценции теряется (переходит в тепло), и в случае ультрафиолетового возбуждения она значительно больше. Вторая причина - в том, что часть УФ излучения, не поглощенная люминофором, не участвует в создании светового потока, в отличие от светодиодов на основе синего излучателя, а увеличение толщины люминофорного покрытия приводит к повышению поглощения в нём света люминесценции. И наконец, КПД ультрафиолетовых светодиодов значительно ниже КПД синих.

Достоинства и недостатки люминофорных светодиодов

Учитывая высокую стоимость светодиодных источников освещения по сравнению с традиционными лампами, необходимы веские причины для использования таких устройств :

Но есть и недостатки:

Светодиоды освещения обладают также особенностями, присущими всем полупроводниковым излучателям, учитывая которые, можно найти наиболее удачное применение, например, направленность излучения. Светодиод светит только в одну сторону без применения дополнительных отражателей и рассеивателей. Светодиодные светильники наилучшим образом подходят для местного и направленного освещения.

Перспективы развития технологии белых светодиодов

Технологии изготовления светодиодов белого цвета, пригодных для целей освещения, находятся в стадии активного развития. Исследования в этой области стимулируются повышенным интересом со стороны общества. Перспективы значительной экономии энергии привлекают инвестиции в сферу изучения процессов, развития технологии и поиска новых материалов. Судя по публикациям производителей светодиодов и сопутствующих материалов, специалистов в области полупроводников и светотехники, можно обозначить пути развития в этой области:

См. также

Примечания

  1. , p. 19-20.
  2. Светодиоды MC-E компании Cree, содержащие красный, зелёный, голубой и белый излучатели Архивировано 22 ноября 2012 года.
  3. Светодиоды VLMx51 компании Vishay, содержащие красный, оранжевый, жёлтый и белый излучатели (англ.) . LED Professional. Дата обращения 10 ноября 2012. Архивировано 22 ноября 2012 года.
  4. Многоцветные светодиоды XB-D и XM-L компании Cree (англ.) . LED Professional. Дата обращения 10 ноября 2012. Архивировано 22 ноября 2012 года.
  5. Светодиоды XP-C компании Cree, содержащие шесть монохроматических излучателей (англ.) . LED Professional. Дата обращения 10 ноября 2012. Архивировано 22 ноября 2012 года.
  6. Никифоров С. «S-класс» полупроводниковой светотехники // Компоненты и технологии: журнал. - 2009. - № 6 . - С. 88-91 .
  7. Трусон П. Халвардсон Э. Преимущества RGB-светодиодов для осветительных приборов // Компоненты и технологии: журнал. - 2007. - № 2 .
  8. , p. 404.
  9. Никифоров С. Температура в жизни и работе светодиодов // Компоненты и технологии: журнал. - 2005. - № 9 .
  10. Светодиоды для интерьерной и архитектурной подсветки (англ.) . LED Professional. Дата обращения 10 ноября 2012. Архивировано 22 ноября 2012 года.
  11. Сян Лин Ун (Siang Ling Oon). Светодиодные решения для систем архитектурной подсветки // Полупроводниковая светотехника: журнал. - 2010. - № 5 . - С. 18-20 .
  12. Светодиоды RGB для использования в электронных табло (англ.) . LED Professional. Дата обращения 10 ноября 2012. Архивировано 22 ноября 2012 года.
  13. High CRI LED Lighting  | Yuji LED (неопр.) . yujiintl.com. Дата обращения 3 декабря 2016.
  14. Туркин А. Нитрид галлия как один из перспективных материалов в современной оптоэлектронике // Компоненты и технологии: журнал. - 2011. - № 5 .
  15. Светодиоды с высокими значениями CRI (англ.) . LED Professional. Дата обращения 10 ноября 2012. Архивировано 22 ноября 2012 года.
  16. Технология EasyWhite компании Cree (англ.) . LEDs Magazine. Дата обращения 10 ноября 2012. Архивировано 22 ноября 2012 года.
  17. Никифоров С., Архипов А. Особенности определения квантового выхода светодиодов на основе AlGaInN и AlGaInP при различной плотности тока через излучающий кристалл // Компоненты и технологии: журнал. - 2008. - № 1 .
  18. Никифоров С. Теперь электроны можно увидеть: светодиоды делают электрический ток очень заметным // Компоненты и технологии: журнал. - 2006. - № 3 .
  19. Светодиоды с матричным расположением большого количества полупроводниковых чипов (англ.) . LED Professional. Дата обращения 10 ноября 2012. Архивировано 22 ноября 2012 года.
  20. Срок службы белых светодиодов (англ.) . U.S. Department of Energy. Дата обращения 10 ноября 2012. Архивировано 22 ноября 2012 года.
  21. Виды дефектов LED и методы анализа (англ.) . LED Professional. Дата обращения 10 ноября 2012. Архивировано 22 ноября 2012 года.
  22. , p. 61, 77-79.
  23. Светодиоды компании SemiLEDs (англ.) . LED Professional. Дата обращения 10 ноября 2012. Архивировано 22 ноября 2012 года.
  24. GaN-on-Si Программа исследований светодиодов на кремниевой основе (англ.) . LED Professional. Дата обращения 10 ноября 2012.
  25. Технология изолированного люминофора компании Cree (англ.) . LED Professional. Дата обращения 10 ноября 2012. Архивировано 22 ноября 2012 года.
  26. Туркин А. Полупроводниковые светодиоды: история, факты, перспективы // Полупроводниковая светотехника: журнал. - 2011. - № 5 . - С. 28-33 .
  27. Иванов А. В., Фёдоров А. В., Семёнов С. М. Энергосберегающие светильники на основе высокоярких светодиодов // Энергообеспечение и энергосбережение – региональный аспект: XII Всероссийское совещание: материалы докладов. - Томск: СПБ Графикс, 2011. - С. 74-77 .
  28. , p. 424.
  29. Отражатели для светодиодов на основе фотонных кристаллов (англ.) . Led Professional. Дата обращения 16 февраля 2013. Архивировано 13 марта 2013 года.
  30. XLamp XP-G3 (англ.) . www.cree.com. Дата обращения 31 мая 2017.
  31. Белые светодиоды с высоким световым выходом для нужд освещения (англ.) . Phys.Org™. Дата обращения 10 ноября 2012. Архивировано 22 ноября 2012 года.

Введение

Эффективность

Световая эффективность, измеряемая в люменах на ватт (лм/Вт, lm/W) - величина, используемая для определения эффективности преобразования энергии (в нашем случае - электрической) в свет. Обычные лампочки накаливания работают в диапазоне 10-15 лм/Bт. Несколько лет назад стандартной величиной эффективности светодиодов было приблизительно 30 лм/Bт. Но к 2006 году эффективность светодиодов белого свечения более чем удвоилась: один из передовых производителей, компания Cree, смогла продемонстрировать на опытных образцах показатель 70 лм/Вт, что представляет 43-процентное увеличение по сравнению с максимальной светоотдачей их серийных белых светодиодов. В декабре 2006 года фирма Nichia анонсировала новые светодиоды белого свечения с достигнутой эффективностью светоотдачи 150 лм/Вт. Данные образцы продемонстрировали световой поток 9,4 лм с цветовой температурой 4600 К при силе тока 20 мА в условиях лаборатории. Заявленная эффективность приблизительно в 11,5 раз выше таковой у ламп накаливания (13 лм/Вт), в 1,7 раза выше, чем у современных люминесцентных ламп (90 лм/Вт). Более того, превышен показатель натриевых ламп высокого давления (132 люмен/ватт), являющихся лучшим по эффективности источником света среди традиционных ламп.

Преимущества

Твердотельный белый свет (SSL - Solid State Light) все еще не является хорошо известным, несмотря на разнообразие способов его получения и реализации через светодиоды. Большинство компаний и проектировщиков знакомы только с традиционным аналоговым белым освещением, без реальной оценки выгодных и полезных альтернатив, обеспечиваемых применением светодиодов. Кроме легко прогнозируемых выгод, которые могут быть получены от твердотельного светодиодного освещения (экономия электроэнергии, длительный срок службы, и т.д.), следует обратить внимание на следующие специфические признаки светодиодов как новых источников белого света:

  • малое тепловыделение и низкое питающее напряжение (гарантирует высокий уровень безопасности);
  • отсутствие стеклянной колбы (определяет очень высокую механическую прочность и надежность);
  • отсутствие разогрева или высоких пусковых напряжений при включении;
  • безынерционность включения/выключения (реакция < 100 нс);
  • не требуется преобразователь постоянного/переменного тока;
  • абсолютный контроль (регулировка яркости и цвета в полном динамическом диапазоне);
  • полный спектр излучаемого света (или, если требуется, специализированный спектр);
  • встроенное светораспределение;
  • компактность и удобство в установке;
  • отсутствие ультрафиолетового и иных вредных для здоровья излучений;
  • не применяется никаких опасных веществ, типа ртути.

Как получить белый свет с использованием светодиодов?

Черный цвет - это отсутствие всех цветов. Когда свет от всех частей цветового спектра накладывается друг на друга (то есть все цвета присутствуют), совокупная смесь кажется белой. Это так называемый полихроматический белый свет. Основными цветами, из которых можно получить все оттенки, являются красный, зеленый и синий (RGB). Вторичные цвета, также называемые дополнительными: сиреневый (смесь красного и синего); голубой (смесь зеленого и синего); и желтый (смесь красного и зеленого). Любой дополнительный цвет и противоположный основной цвет также дают в сумме белый свет (желтый и синий, голубой и красный, сиреневый и зеленый).

Существуют различные способы получения белого света от светодиодов.

Первый - смешивание цветов по технологии RGB. На одной матрице плотно размещаются красные, синие и зеленые светодиоды, излучение которых смешивается при помощи оптической системы, например линзы. В результате получается белый свет. В другом, менее распространенном подходе, для получения белого света смешивается излучение светодиодов основных и вторичных цветов.

Во втором способе желтый (или зеленый плюс красный) люминофор наносится на синий светодиод, в результате два или три излучения смешиваются, образуя белый или близкий к белому свет.

Третий способ заключается в том, что на поверхность светодиода, излучающего в ультрафиолетовом диапазоне, наносятся три люминофора, излучающих, соответственно, синий, зеленый и красный свет. Это похоже на то, как светит люминесцентная лампа.

В основе четвертого способа получения белого света с помощью светодиодов, лежит использование полупроводника ZnSe. Структура представляет собой синий светодиод ZnSe, "выращенный" на ZnSe-подложке. Активная область проводника при этом излучает синий свет, а подложка - желтый.

Тип кристалла

Люминофор

Цвет излучения и возможные оттенки

Области применения

Синий и Зеленый

Белый + R, G, B и любые многоцветные комбинации

Подсветка ЖКИ, архитектура, ландшафт, табло и дисплеи

Белый + B, Y и различные многоцветные оттенки

Сине-зеленый

Красный или красно-оранжевый

Белый + B, R и различные многоцветные оттенки

Автомобильное освещение, архитектура, ландшафт

Синие 470-450 нм

Только белый

Общее освещение и подсветка

Ультра-фиолетовый

Белый или различные монохроматические цвета в зависимости от используемого фосфора

Общее освещение и подсветка

Синий / желтый

Белый + синий от эпитаксиального слоя, желтый от подложки

Общее освещение и подсветка

Какой же из способов лучше?

У каждого из них есть свои достоинства и недостатки. Технология смешения цветов в принципе позволяет не только получить белый цвет, но и перемещаться по цветовой диаграмме при изменении тока, пропускаемого через разные светодиоды. Этим процессом можно управлять вручную или посредством специальной программы. Таким же образом возможно получать различные цветовые температуры. Поэтому RGB-матрицы широко используются в светодинамических системах. Кроме того, большое количество светодиодов в матрице обеспечивает высокий суммарный световой поток и большую осевую силу света. Но световое пятно из-за аберраций оптической системы имеет неодинаковый цвет в центре и по краям, а главное, в связи с неравномерным отводом тепла с краев матрицы и из ее середины светодиоды нагреваются по-разному, и, соответственно, по-разному изменяется их цвет в процессе старения — суммарные цветовая температура и цвет "плывут" за время эксплуатации. Это неприятное явление достаточно сложно и дорого скомпенсировать.

Белые светодиоды с люминофорами (phosphor-converted LEDs) существенно дешевле, чем светодиодные RGB-матрицы (в пересчете на единицу светового потока), и позволяют получить хороший белый цвет. И для них, в принципе, не проблема попасть в точку с координатами (X=0,33, Y=0,33) на цветовой диаграмме МКО. Недостатки же таковы: во-первых, у них меньше, чем у RGB-матриц, светоотдача из-за преобразования света в слое люминофора; во-вторых, достаточно трудно точно проконтролировать равномерность нанесения люминофора в технологическом процессе (как следствие, не контролируется цветовая температура); и в-третьих - люминофор тоже стареет, причем быстрее, чем сам светодиод.

Белые светодиоды ZnSe обладают рядом преимуществ. Они работают при напряжении 2,7 В и очень устойчивы к статическим разрядам. Светодиоды ZnSe позволяют излучать свет в гораздо более широком диапазоне цветовых температур, чем устройства на основе GaN (3500-8500 К по сравнению с 6000-8500 К). Это позволяет создавать приборы с более "теплым" свечением, которое предпочитают американцы и европейцы. Есть и недостатки: хотя излучатели на основе ZnSe имеют высокий квантовый выход, они недолговечны, имеют большое электрическое сопротивление и пока не нашли коммерческого применения.


Применение

Цветовая температура

Рассмотрим спектр излучения белого светодиода с люминофором как источника полихроматического света. Белые светодиоды позволяют делать выбор в широком диапазоне цветов от "теплого" белого цвета лампы накаливания до "холодного" люминесцентного белого, в зависимости от задач применения.

Эта диаграмма показывает полный диапазон белого от его более теплой области 2800 K, до холодной синевато-белой области 9000 К. Многие оттенки белого уже определены различными источниками света, используемыми в окружающем нас пространстве: офисный, прохладный синевато-белый свет люминесцентных ламп; домашний, желтовато-белый свет ламп накаливания; индустриальный, бриллиантовый сине-белый свет ртутных ламп; желто-белый свет от уличных натриевых ламп высокого давления.

Не стало бы возможным, если б не изобретение технологии получения настоящего белого цвета. Ведь даже самая мощная светодиодная лампа вряд-ли найдёт массовое применение если не будет светить белым цветом. В светодиоде электрический ток преобразуется непосредственно в световое излучение, и теоретически это можно сделать почти без потерь. Действительно, светодиод мало нагревается, что делает его очень удобным. Светодиод излучает в узкой части спектра, его цвет чист, а вредные дополнительные ультрафиолетовые и инфракрасные составляющие излучения - отсутствуют.

Прочен и надежен, а срок службы может достигать 20 лет. Но и это не предел. Некоторые фирмы начинают внедрять в производство новейшую разработку, позволяюшую довести срок службы LED приборов до 100 лет! Так как же получают белый свет в светодиодах? Есть несколько способов изготовления белого светодиода.

1. Желто-зеленый или зеленый с красным, люминофор наносятся на голубой светодиод, так что излучения смешиваются, образуя близкий к белому свет.
2. На поверхность светодиода, излучающего в ультрафиолетовом диапазоне, наносится три люминофора, излучающих голубой, зеленый и красный свет.
3. Смешивание цветов по технологии RGB. На одной матрице плотно размещаются красные, голубые и зеленые светодиоды, излучение которых смешивается при помощи оптической системы и получается белый свет.


На практике чаще всего используют синий светодиод с желтым люминофором и ультрафиолетовый светодиод с белым люминофором. сделал возможным внедрение такого освещения во все сферы жизнедеятельности и промышленности. Сейчас использование светодиодых ламп в качестве источников света, многократно превосходит осветительные приборы, где используются традиционные источники света благодаря своим неоспоримым преимуществам.


Мощные белые светодиоды выпускаются в корпусах для поверхностного монтажа, позволяющих использовать высокоэффективные технологии производства готовых изделий на печатных платах и стандартных технологических процессов пайки без применения клеев и дополнительных приспособлений. С каждым годом ведущие кампании мира делают всё новые усовершенствования по повышению значений светового потока и световой отдачи, а также надежности светодиодов.

Обсудить статью БЕЛЫЕ СВЕТОДИОДЫ

Белый светодиод

Мощный белый светодиод

Различают два вида белых светодиодов:

  • Многокристальные светодиоды, чаще - трехкомпонентные (RGB -светодиоды), имеющие в своём составе три полупроводниковых излучателя красного, зелёного и синего свечения, объединённые в одном корпусе.
  • Люминофорные светодиоды, создаваемые на основе ультрафиолетового или синего светодиода , имеющие в своем составе слой специального люминофора, преобразующего в результате фотолюминесценции часть излучения светодиода в свет в относительно широкой спектральной полосе с максимумом в области жёлтого (наиболее распространенная конструкция). Излучение светодиода и люминофора, смешиваясь, дают белый свет различных оттенков.

История изобретения

Первые полупроводниковые излучатели красного цвета для промышленного использования были получены Н. Холоньяком в 1962 году. В начале 70-х годов появились светодиоды желтого и зеленого цвета свечения. Световой выход в начале малоэффективных устройств к 1990 году достиг уровня в один люмен . В 1993 году Суджи Накамура, инженер компании Nichia (Япония) создал первый синий светодиод высокой яркости. Практически сразу появились светодиодные RGB устройства, поскольку синий, красный и зеленый цвета позволяли получить любой цвет, в том числе и белый. Белые люминофорные светодиоды впервые появились в 1996 г. В дальнейшем, технология быстро развивалась и к 2005 году световой выход светодиодов достиг значения 100 лм/Вт и более. Появились светодиоды с различными оттенками свечения, качество света позволило конкурировать с лампами накаливания и с ставшими уже традиционными люминисцентными лампами. Началось использование светодиодных осветительных устройств в быту, в внутреннем и уличном освещении .

RGB светодиоды

Белый свет может быть создан путем смешивания излучений светодиодов различного цвета. Наиболее распространена трихроматическая конструкция из красного (R), зелёного (G) и синего (B) источников, хотя встречаются бихроматические, тетрахроматические и более многоцветные варианты. Многоцветный светодиод, в отличие от других RGB полупроводниковых излучателей (светильники, лампы , кластеры) имеет один законченный корпус, чаще всего аналогичный одноцветному светодиоду. Светодиодные чипы располагаются рядом друг с другом и используют одну общую линзу и отражатель . Поскольку полупроводниковые чипы имеют конечный размер и собственные диаграммы направленности , такие светодиоды чаще всего имеют неравномерные угловые цветовые характеристики . Кроме того, для получения правильного соотношения цветов зачастую недостаточно установить расчётный ток , поскольку световой выход каждого чипа неизвестен заранее и подвержен изменениям в процессе работы. Для установки нужных оттенков, RGB светильники иногда оснащают специальными регулирующими устройствами .

Спектр RGB светодиода определяется спектром составляющих его полупроводниковых излучателей и имеет ярко выраженную линейчатую форму. Такой спектр сильно отличается от спектра солнца, следовательно индекс цветопередачи RGB светодиода невысок. RGB-светодиоды позволяют легко и в широких пределах управлять цветом свечения путем изменения тока каждого светодиода, входящего в триаду , регулировать цветовой тон излучаемого ими белого света прямо в процессе работы - вплоть до получения отдельных самостоятельных цветов.

Многоцветные светодиоды имеют зависимость светового выхода и цвета от температуры за счет различных характеристик составляющих прибор излучающих чипов, что сказывается в незначительном изменении цвета свечения в процессе работы . Срок службы многоцветного светодиода определяется долговечностью полупроводниковых чипов, зависит от конструкции и чаще всего превышает срок службы люминофорных светодиодов.

Многоцветные светодиоды используются в основном для декоративной и архитектурной подсветки , в электронных табло и в видеоэкранах .

Люминофорные светодиоды

Спектр одного из вариантов люминофорного светодиода

Комбинирование синего (чаще) или ультрафиолетового (реже) полупроводникового излучателя и люминофорного конвертера позволяет изготовить недорогой источник света с неплохими характеристиками. Самая распространенная конструкция такого светодиода содержит синий полупроводниковый чип нитрида галлия , модифицированный индием (InGaN) и люминофор с максимумом переизлучения в области жёлтого цвета - иттрий -алюминиевый гранат, легированный трёхвалентным церием (ИАГ). Часть мощности исходного излучения чипа покидает корпус светодиода, рассеиваясь в слое люминофора, другая часть поглощается люминофором и переизлучается в области меньших значений энергии. Спектр переизлучения захватывает широкую область от красного до зелёного, однако результирующий спектр такого светодиода имеет ярко выраженный провал в области зелёного-синезелёного цвета.

В зависимости от состава люминофора, выпускаются светодиоды с разной цветовой температурой («тёплые» и «холодные»). Путем комбинирования различных типов люминофоров, достигается значительное увеличение индекса цветопередачи (CRI или R a) , что позволяет говорить о возможности применения светодиодного освещения в критических для качества цветопередачи условиях.

Один из путей увеличения яркости люминофорных светодиодов при сохранении или даже снижении их стоимости - увеличение тока через полупроводниковый чип без увеличения его размеров - увеличение плотности тока . Такой метод связан с одновременным повышением требований к качеству самого чипа и к качеству теплоотвода. С увеличением плотности тока, электрические поля в объеме активной области снижают световой выход . При достижении предельных токов, поскольку участки светодиодного чипа с различной концентрацией примеси и разной шириной запрещённой зоны проводят ток по-разному , происходит локальный перегрев участков чипа, что влияет на световой выход и долговечность светодиода в целом. В целях увеличения выходной мощности при сохранении качества спектральных характеристик, теплового режима, выпускаются светодиоды, содержащие кластеры светодиодных чипов в одном корпусе.

Одна из самых обсуждаемых тем в области технологии полихромных светодиодов - это их надёжность и долговечность. В отличие от многих других источников света, светодиод с течением времени меняет свои характеристики светового выхода (эффективности), диаграммы направленности, цветовой оттенок, но редко выходит из строя полностью. Поэтому для оценки срока полезного использования принимают, например для освещения, уровень снижения светотдачи до 70% от первоначального значения (L70) . То есть, светодиод, яркость которого в процессе эксплуатации снизалась на 30% считается вышедшим из строя. Для светодиодов, используемых в декоративной подсветке используется в качестве оценки срока жизни уровень снижения яркости 50% (L50).

Срок службы люминофорного светодиода зависит от многих параметров . Кроме качества изготовления самой светодиодной сборки (способа крепления чипа на кристаллодержателе, способа крепления токоподводящих проводников, качества и защитных свойств герметизирующих материалов), время жизни в основном зависит от особенностей самого излучающего чипа и от изменения свойств люминофора с течением наработки (деградация). Причём, как показывают многочисленные исследования, основным фактором влияния на срок службы светодиода считается температура.

Влияние температуры на срок службы светодиода

Полупроводниковый чип в процессе работы часть электрической энергии излучает в виде излучения , часть в виде тепла . При этом, в зависимости от эффективности такого преобразования, количество тепла составляет около половины для самых эффективных излучателей или более. Сам полупроводниковый материал обладает невысокой теплопроводностью , кроме того, материалы и конструкция корпуса обладают определенной неидеальной тепловой проводимостью, что приводит к разогреву чипа до высоких (для полупроводниковой структуры) температур. Современные светодиоды работают при температурах чипа в районе 70-80 градусов. И дальнейшее увеличение этой температуры при использовании нитрида галлия, недопустимо. Высокая температура приводит к увеличению количества дефектов в активном слое, приводит к повышенной диффузии , изменению оптических свойств подложки. Всё это приводит к увеличению процента безизлучательной рекомбинации и поглощению фотонов материалом чипа. Увеличение мощности и долговечности достигается усовершенствованием как самой полупроводниковой структуры (снижение локального перегрева), так и развитием конструкции светодиодной сборки, улучшением качества охлаждения активной области чипа. Также, проводятся исследования с другими полупроводниковыми материалами или подложками .

Люминофор также подвержен действию высокой температуры. При длительном воздействии температуры переизлучательные центры ингибируются и коэффициент преобразования, а также спектральные характеристики люминофора ухудшаются. В первых и некоторых современных конструкциях полихромных светодиодов люминофор наносится прямо на полупроводниковый материал и тепловое воздействие максимально. Кроме мер по снижению температуры излучающего чипа, производители используют различные способы снижения влияния температуры чипа на люминофор. Технологии изолированного люминофора и конструкции светодиодных ламп, в которых люминофор физически отделен от излучателя позволяют увеличить срок службы источника света.

Корпус светодиода, изготавливаемый из оптически прозрачной кремнийорганической пластмассы или эпоксидной смолы, подвержен старению под воздействием температуры и со временем начинает тускнеть и желтеть, поглощая часть излучаемой светодиодом энергии. Отражающие поверхности также портятся при нагреве - вступают во взаимодействие с другими элементами корпуса, подвержены коррозии. Все эти факторы в совокупности приводят к тому, что яркость и качество излучаемого света постепенно снижается. Однако, этот процесс можно успешно замедлить, обеспечивая эффективный теплоотвод.

Конструкция люминофорных светодиодов

Схема одной из конструкций белого светодиода. MPCB - печатная плата с высокой тепловой проводимостью.

Современный люминофорный светодиод - это сложное устройство, объединяющее много оригинальных и уникальных технических решений. Светодиод имеет несколько основных элементов, каждый из которых выполняет важную, зачастую не одну функцию :

Все элементы конструкции светодиода испытывают тепловые нагрузки и должны быть подобраны с учетом степени их теплового расширения. И немаловажным условием хорошей конструкции является технологичность и низкая стоимость сборки светодиодного прибора и монтажа его в светильник.

Яркость и качество света

Самым важным параметром считается даже не яркость светодиода, а его cветовая отдача , то есть световой выход с каждого Ватта потреблённой светодиодом электрической энергии. Световая отдача современных светодиодов достигает 150-170 лм/Вт. Теоретический предел технологии оценивается в 260-300 лм/Вт . При оценке необходимо учитывать, что эффективность светильника на базе светодиодов существенно ниже за счет КПД источника питания, оптических свойств рассеивателя, отражателя и других элементов конструкции. Кроме того, производители зачастую указывают начальную эффективность излучателя при нормальной температуре. Тогда как температура чипа в процессе работы значительно выше. Это приводит к тому, что реальная эффективность излучателя ниже на 5 - 7%, а светильника зачастую - вдвое.

Второй не менее важный параметр - качество производимого светодиодом света. Для оценки качества цветопередачи существует три параметра:

Люминофорный светодиод на базе ультрафиолетового излучателя

Кроме уже ставшего распространённым варианта комбинации голубого светодиода и ИАГ, развивается также конструкция на базе ультрафиолетового светодиода. Полупроводниковый материал, способный излучать в близкой ультрафиолетовой области , покрывают несколькими слоями люминофора на базе европия и сульфида цинка, активированного медью и алюминием. Такая смесь люминофоров дает максимумы переизлучения в районе зелёной, синей и красной областей спектра. Полученный белый свет обладает весьма хорошими характеристиками качества, однако эффективность такого преобразования пока невелика.

Достоинства и недостатки люминофорных светодиодов

Учитывая высокую стоимость светодиодных источников освещения по сравнению с традиционными лампами, необходимы веские причины для использования таких устройств :

  • Основное преимущество белых светодиодов - высокий КПД. Низкое удельное энергопотребление позволяет применять их в длительно работающих источниках автономного и аварийного освещения .
  • Высокая надежность и длительный срок службы позволяют говорить о возможной экономии на замене ламп. Кроме того, использование светодиодных источников света в труднодоступных местах и уличных условиях позволяет снизить затраты на обслуживание. В совокупности с высокой эффективностью, можно сказать о существенной экономии средств при использовании светодиодного освещения в некоторых применениях.
  • Малый вес и размер устройств. Светодиоды отличаются малыми габаритами и пригодны для использования в труднодоступных местах и малогабаритных переносных устройствах.
  • Отсутствие ультрафиолетового и инфракрасного излучения в спектре позволяет использовать светодиодное освещение без вреда для человека и в специальных целях (например для освещения раритетных книг или других подверженных влиянию света предметов).
  • Отличная работа при отрицательных температурах без снижения, а зачастую и с улучшением параметров. Большинство типов светодиодов показывают бо́льшую эффективность и долговечность при снижении температуры, однако устройства питания, управления и элементы конструкции могут иметь противоположную зависимость.
  • Светодиоды - безинерционные источники света, они не требуют времни на прогрев или выключение, как например люминесцентные лампы и количество циклов включения и выключения не оказывает негативного влияния на их надежность.
  • Хорошая механическая прочность позволяет использовать светодиоды в тяжёлых условиях эксплуатации.
  • Легкость регулирования мощности как скважностью , так и регулированием тока питания без снижения параметров эффективности и надёжности.
  • Безопасность использования, нет опасности поражения электрическим током за счет низкого питающего напряжения.
  • Низкая пожароопасность, возможность использования в условиях взрывоопасности и опасности возгорания за счет отсутствия накальных элементов.
  • Влагостойкость, стойкость к воздействию агрессивных сред.
  • Химическая нейтральность, отсутствие вредных выбросов и отсутствие специальных требований к процедурам утилизации.

Но есть и недостатки:

Светодиоды освещения обладают также особенностями, присущими всем полупроводниковым излучателям, учитывая которые, можно найти наиболее удачное применение, например направленность излучения. Светодиод светит только в одну сторону без применения дополнительных отражателей и рассеивателей. Светодиодные светильники наилучшим образом подходят для местного и направленного освещения.

Перспективы развития технологии белых светодиодов

Технологии изготовления светодиодов белого цвета, пригодных для целей освещения находятся в стадии активного развития. Исследования в этой области стимулируются повышенным интересом со стороны общества. Перспективы значительной экономии энергии привлекают инвестиции в сферу изучения процессов, развития технологии и поиска новых материалов. Судя по публикациям производителей светодиодов и сопутствующих материалов, специалистов в области полупроводников и светотехники, можно обозначить пути развития в этой области:

См. также

Примечания

  1. , p. 19-20
  2. Светодиоды MC-E компании Cree, содержащие красный, зелёный, голубой и белый излучатели (англ.) . LED Professional. Архивировано
  3. Светодиоды VLMx51 компании Vishay, содержащие красный, оранжевый, жёлтый и белый излучатели (англ.) . LED Professional. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  4. Многоцветные светодиоды XB-D и XM-L компании Cree (англ.) . LED Professional. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  5. Светодиоды XP-C компании Cree, содержащие шесть монохроматических излучателей (англ.) . LED Professional. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  6. Никифоров С. «S-класс» полупроводниковой светотехники // Компоненты и технологии : журнал. - 2009. - № 6. - С. 88-91.
  7. Трусон П. Халвардсон Э. Преимущества RGB-светодиодов для осветительных приборов // Компоненты и технологии : журнал. - 2007. - № 2.
  8. , p. 404
  9. Никифоров С. Температура в жизни и работе светодиодов // Компоненты и технологии : журнал. - 2005. - № 9.
  10. Светодиоды для интерьерной и архитектурной подсветки (англ.) . LED Professional. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  11. Сян Лин Ун (Siang Ling Oon) Светодиодные решения для систем архитектурной подсветки // : журнал. - 2010. - № 5. - С. 18-20.
  12. Светодиоды RGB для использования в электронных табло (англ.) . LED Professional. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  13. Туркин А. Нитрид галлия как один из перспективных материалов в современной оптоэлектронике // Компоненты и технологии : журнал. - 2011. - № 5.
  14. Светодиоды с высокими значениями CRI (англ.) . LED Professional. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  15. Технология EasyWhite компании Cree (англ.) . LEDs Magazine. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  16. Никифоров С., Архипов А. Особенности определения квантового выхода светодиодов на основе AlGaInN и AlGaInP при различной плотности тока через излучающий кристалл // Компоненты и технологии : журнал. - 2008. - № 1.
  17. Никифоров С. Теперь электроны можно увидеть: светодиоды делают электрический ток очень заметным // Компоненты и технологии : журнал. - 2006. - № 3.
  18. Светодиоды с матричным расположением большого количества полупроводниковых чипов (англ.) . LED Professional. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  19. Срок службы белых светодиодов Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  20. Виды дефектов LED и методы анализа (англ.) . LED Professional. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  21. , p. 61, 77-79
  22. Светодиоды компании SemiLEDs (англ.) . LED Professional. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  23. GaN-on-Si Программа исследований светодиодов на кремниевой основе (англ.) . LED Professional. Проверено 10 ноября 2012.
  24. Технология изолированного люминофора компании Cree (англ.) . LED Professional. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  25. Туркин А. Полупроводниковые светодиоды: история, факты, перспективы // Полупроводниковая светотехника : журнал. - 2011. - № 5. - С. 28-33.
  26. Иванов А. В., Фёдоров А. В., Семёнов С. М. Энергосберегающие светильники на основе высокоярких светодиодов // Энергообеспечение и энергосбережение – региональный аспект : XII Всероссийское совещание: материалы докладов. - Томск: СПБ Графикс, 2011. - С. 74-77.
  27. , p. 424
  28. Белые светодиоды с высоким световым выходом для нужд освещения (англ.) . Phys.Org™. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  29. Основы светодиодного освещения (англ.) . U.S. Department of Energy. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  30. Шаракшанэ А. Шкалы оценки качества спектрального состава света - CRI и CQS // Полупроводниковая светотехника : журнал. - 2011. - № 4.
  31. Ультрафиолетовые светодиоды SemiLED с длиной волны 390-420 нм. (англ.) . LED Professional. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  32. , p. 4-5
  33. Системы активного охлаждения кампании Nuventix (англ.) . LED Professional. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  34. Н.П.Сощин Современные фотолюминофоры для эффективных приборов твердотельного освещения. Материалы конференции. (рус.) (february 1, 2010). Архивировано
  35. О.Е.Дудукало, В.А.Воробьев (рус.) (may 31, 2011). Архивировано из первоисточника 27 октября 2012.
  36. Тесты ускоренной температурной деградации люминофоров (англ.) . LED Professional. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  37. Research and Markets Releases New 2012 Report on LED Phosphor Materials (англ.) . LED Professional. Архивировано из первоисточника 10 декабря 2012. Проверено 30 ноября 2012.
  38. Intematix представил набор люминофоров для качественной цветопередачи (англ.) . LED Professional. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  39. Lumi-tech предложил SSE люминофор для белых светодиодов (англ.) . LED Professional. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  40. Красный фосфор от компании Intematix (англ.) . LED Professional. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  41. Светодиоды на квантовых точках (англ.) . LED Professional. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  42. Прототип красного всетодиода с длиной волны 609 нм компании Osram с эффективностью 61 % (англ.) . LED Professional. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  43. Переход на структуру GaN-on-Si (англ.) . LED Professional. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  44. Tim Whitaker Joint venture to make ZnSe white LEDs (англ.) (December 6, 2002). Архивировано из первоисточника 27 октября 2012. Проверено 10 ноября 2012.
  45. , p. 426

Литература

  • Шуберт Ф.Е. Светодиоды. - М .: Физматлит, 2008. - 496 с. - ISBN 978-5-9221-0851-5
  • Вейнерт Д. Светодиодное освещение: Справочник . - Philips, 2010. - 156 с. - ISBN 978-0-615-36061-4

Ссылки

  • Сайт департамента энергетики США о светодиодном освещении
  • Led Professional. Научно-технический журнал о светодиодах и светодиодном освещении, Австрия
  • LEDs Magazine. Научно-технический журнал о светодиодах и светодиодном освещении. США
  • Полупроводниковая светотехника. Российский журнал о светодиодах и светодиодном освещении