Свойства строительных материалов. Материалы для лепки

Будущая керамика

Из какого материала был сделан первый шрифт Иоганна Гутенберга - основоположника европейского книгопечатания

Материал начинающего скульптора

Осадочная горная порода, употребляющаяся для гончарных изделий, кирпича, строительных и скульптурных работ

Пластичная осадочная горная порода, состоящая в основном из глинистых минералов

Почва, осадочная горная порода

Строительное тесто

Сырье для гончарных изделий

Осадочная, вязкая во влажном состоянии горная порода из мельчайших частиц минералов

Какой материал использует ласточка для строительства своего гнезда?

Что означает греческое слово «keramos», от которого произошла керамика?

Именно из этого аллах создал верблюда и финиковую пальму

Из чего сделан мифический великан голем?

Сырье гончара

Из этого природного материала Бог смастерил Адама

Гончарный «пластилин»

Почва-пластилин

Осадочная горная порода

Материал гончара

Огнеупорная и обожженая

Из нее творит гончар

Из чего сделан великан голем?

Материал для лепки

Почвапластилин

Примитивный заменитель цемента

Сырье для Адама

Масса на гончарном круге

Основа пластилина

Месиво для горшка и кирпича

Каолин, терракота

Стройматериал для казахских мазанок

Сырье для керамики

Порода, годная для горшков

. «пластилин» для гончара

Минерал для масок

Из нее Бог вылепил Адама

Сырье для красного кирпича

Сырье гончара и скульптора

Сырье для лепки Адама

Керамика в зародыше

Что есть в самане, кроме соломы?

. «пластилин» для скульптора

Пластичная осадочная горная порода, основной материал для керамики

. "Пластилин" для гончара

. "Пластилин" для скульптора

Гончарный "пластилин"

Ж. земля или землистое вещество, которое с водою составляет мягкое, вязкое и скользкое тесто, сохнущее на воздухе и принимающее в огне каменистую твердость и крепость. Основанием глине служить метал глиний м. алюмний, алюмий или алюминий, в окисленном виде глинозем м. Живая глина, у кирпичников и гончаров, в том виде, как она в пластах, в земле; пресная, налитая водой и вымятая, вымешанная; кислая, лежалая в замеске, готовая в дело. Валяльная, сукновальная глина, белая и тощая, отбирающая жир из шерсти. Глина зеленка, моск. малярная зелень, празелень. Разживайся угольком да глинкой, о нищете. Орем землю до глины, а едим мякину. Человек не глина, а дождь не дубина, не убьет и не размоет. Глинка ж. дикий полевой голубь (не искажено ли из клинтух?). Глиноземный, -земовый, -земистый, до глинозема относящийся или из него составленный. Глиняный, сделанный из глины; скудельный. Простую гончарную посуду называют глиняною, а белую фаянсовою и каменною. Не глиняный, от дождя не размокнешь. Бородка Минина, а совесть глиняна. Есть девка серебряна, поискать парня глиняного, жениха. Глинчатый или глинистый, содержащий глину; похожий на глину, ей подобный. Глинистая почва, в которой до половины глины; тяжелая, вязкая; белая глинистая, лудяк, холодная. Глинистый сланец, слоистая, сильно отвердевшая глина, с другою примесью. Глиноватый, о почве, глинистый, в меньшей степени. Глинище ср. глинница ж. или глинокопня ж. яма или копь, где берут глину; глинище влад. глиняная почва. Глинник стар. гончар, горшечник, горшеня, скудельник. Глинобитный, глинобойный, о строении, сбитый из земли, глины, иногда с примесью соломы. Глиновал м. рабочий, валяющий глину. Глиновальня ж. место, где ее валяют. Глиномял, топтун, работник, мнущий глину, обычно ногами. Глинокоп м. рабочий, копающий глину. Глиномес м. работник для мешения глины. Глиномесный, до замески глины относящийся, напр. снаряд. Глинник или глинчак м. глинище, глинник, чисто глиняная почва. Растение этой же почвы Lygeum. Он персты слюнит, да дудки глинит, лепит, тунеядничает. Глиносоломенные крыши, кроются пучками соломы, обмокнутыми в жидкую глину, сверху смазываются вгладь, а по просушке иногда смолятся, особенно горною смолою, и посыпаются песком

Из чего сделан великан голем

Из чего сделан мифический великан голем

Какой материал использует ласточка для строительства своего гнезда

Партнер соломы в самане

Терракота

Что есть в самане, кроме соломы

Что означает греческое слово "keramos", от которого произошла керамика

Сырьё для лепки Адама

Исследование пластичных материалов. Игрушка своими руками.

Выполнил:

ученик 1 «Б» класса

Сидоров Андрей

Проверила:

учитель начальных классов

Ившина И.В.

Пермь, 2016

Введение. 3

1. Теоретическая часть. 5

1.1. Польза лепки. 5

1.2. Материалы для лепки. Свойства и использование. 7

2. Исследовательская часть. 9

2.1. Проведение социологического опроса. 9

2.2. Замораживание пластилина. 9

2.3. Выбор материала для лепки. 9

2.4. Использование полимерной глины.. 11

2.5. Наблюдение. 11

Выводы.. 12

Список использованной литературы. 13

Приложение 1. Опросный лист. 14

Приложение 2. Результаты опроса (диаграммы) 15

Приложение 3. Иллюстрация процесса создания игрушки. 16

Приложение 4. Сравнение игрушек из разных материалов. 17

Приложение 5. Примеры работ из природной глины. 18


Введение.

Все дети любят играть и у каждого ребенка есть любимые игрушки. Чем старше становится ребенок, тем больше ему хочется не просто играть игрушками, но и самому творить и создавать что-то новое. Поэтому дети старшего возраста увлекаются разными творческими направлениями: рисование, вышивание, вырезание из дерева, лепка и прочие. Творчество развивает фантазию, мышление, разные умения и навыки.

Лепка - одно из направлений творчества, которое известно всем детям. Слепить можно что угодно, даже новую игрушку. Многие ребята лепили из пластилина ещё в детском саду и знают, какой это интересный процесс. Пластилин очень пластичный и лепить из него просто, но он оставляет следы на мебели и теряет форму при нажатии. Поэтому слепленные из пластилина фигуры не пригодны для игр. Игрушки из пластилина быстро приходят в негодность.

Актуальным становится вопрос: А можно ли научиться создавать своими руками новые игрушки, занимаясь лепкой? В данной работе мы рассмотрим разные варианты лепки для получения пригодных для игр игрушек.

Цель данной работы выяснить, можно ли использовать результаты лепки для активных игр, то есть из какого материала лучше лепить и как сделать слепленную фигурку прочной и долговечной. Дополнительно необходимо узнать, насколько такое творчество полезно и безопасно.



Гипотеза исследования : Слепленные фигурки могут быть пригодны для игр, если:

1. Заморозить пластилиновые фигурки;

2. Использовать для лепки материал, который затвердевает.

Для реализации поставленной цели нами были выдвинуты следующие задачи:

В теоретической части:

1. Дать определение лепки и описать её пользу.

2. Перечислить и описать разные материалы, которые можно использовать для лепки, а также их основные свойства.

В исследовательской части:

3. Провести социологический опрос учеников 1 класса, проанализировать результаты опроса и выяснить актуальность выбранной темы.

4. Провести эксперимент, подтверждающий первую гипотезу (заморозка пластилина).

5. Провести сравнительный анализ описанных в теоретической части материалов и выбрать наиболее подходящий материал для создания игрушек.

6. Провести опыт по созданию игрушки из выбранного материала в домашних условиях. Подтвердить вторую гипотезу (о выборе материала).

7. Провести наблюдение за тем, что станет со слепленными игрушками с течением времени.

8. Проанализировать результаты исследования, сделать выводы

9. Оформить результаты исследования и создать презентацию.

10. Рассказать одноклассникам о своих исследованиях и предложить самый интересный вариант создания игрушек своими руками.

Методы исследования , использованные в работе:

· Сбор материала;

· Изучение литературы;

· Построение диаграмм;

· Эксперимент;

· Наблюдение и опыты;

· Анализ.


Теоретическая часть

Польза лепки.

Лепка - придание формы пластическому материалу (пластилину, глине, пластике и др.) с помощью рук и вспомогательных инструментов - стеков и т. п.

Польза лепки для умственного развития:

Когда ребенок разминает пластилин (или другой материал) в руках, создает из него детали разных форм, присоединяет их друг к другу, сплющивает, вытягивает, развивается мелкая моторика рук. Научно доказано, что она напрямую влияет на развитие речи ребенка, координацию движений, память и логическое мышление.

Когда ребенок концентрируется на своем занятии, он учится терпению и усидчивости.

Когда он создает из стандартных кусочков пластилина новые формы или смешивает цвета, развивается образное, абстрактное и логическое мышление, проявляются творческие способности.

Когда ребенок двумя руками катает шарик или колбаску, у него работают оба полушария мозга, укрепляются межполушарные связи, что, в свою очередь, способствует развитию внимания и саморегуляции.

Лепка по образцу развивает память, способность сопоставлять факты и образы, логическое мышление, терпение, умение собраться, сосредоточиться, довести начатое до конца и оценить полученный результат, сравнив его с оригиналом.

Когда ребенок лепит то, что сам придумал, развивается воображение, творческие способности и образное мышление.

Для здоровья и эмоционального состояния

Занятия лепкой благотворно влияют на нервную систему, психическое и эмоциональное состояние ребенка.

Регулярные занятия спокойными играми способствуют нормализации сна и понижению чрезмерной активности, уменьшают возбудимость и раздражительность.

При необходимости, лепка помогает детям невербально выразить существующие внутренние конфликты и противоречия.

Лепка позволяет «опредметить» страх и преодолеть его через физическое взаимодействие - сломать, смять фигурку или изменить ее, чтобы получилось что-то хорошее.

Занятие лепкой связано с целой гаммой чувств: от тактильных ощущений, восприятия цвета и запаха до сложных внутренних состояний - волнения, интереса, радости от того, что все получается, и огорчения, если ожидания не совпадают с результатом.

Лепка помогает ребенку выразить свои эмоции (в том числе негативные) в социально приемлемой манере, справиться с болью, злостью, гневом, тревогой.

Произведения, которые создает ребенок, помогут взрослым разобраться в его духовном состоянии и оценить наличие эмоциональных или личностных проблем.

Создавая очередную фигурку или картину из пластилина, ребенок может расслабиться, снять напряжение, успокоиться и избавиться от плохого настроения.

Для маленьких мечтателей лепка становится своеобразным мостом из мира собственных фантазий в реальную жизнь. Она помогает принять существующий мир и свыкнуться с его несовершенством.

Психологи активно используют лепку как одно из направлений арт-терапии, которая обращается к внутренним скрытым самоисцеляющим ресурсам ребенка.

Опыт создания шедевров из обычных материалов убеждает ребенка в его значимости и нужности, учит смотреть на вещи под другим углом и находить оригинальные решения даже в самых безвыходных ситуациях.

Для развития личности

Лепка - простой и эффективный способ выявить скрытые способности и развить естественные навыки ребенка, продемонстрировать ему собственную уникальность и творческое начало.

Лепка знакомит детей с понятиями формы и цвета.

Работа с материалом, которому при желании можно придать любую форму, а потом, если нужно, изменить эту форму на новую, развивает у ребенка уверенность в собственных силах, ответственность и любознательность. Он экспериментирует, забыв о том, что что-то может не получиться.

Ребенок учится новому и пытается осознанно использовать свое умение для достижения нужного результата.

Помимо основных моторных навыков, лепка развивает целеустремленность, усидчивость и аккуратность.

Работая над объёмными образами, дети изучают характерные особенности предметов, уточняют детали, осмысливают основные качества объектов. У них формируются знания о свойствах и законах окружающего мира, тренируется зрительное восприятие.

Лепка играет существенную роль в эстетическом воспитании ребенка и развитии у него чувства прекрасного.

Материалы для лепки. Свойства и использование.

Лепить можно из различных материалов: пластилина, природной глины, полимерной глины, клеевых смесей(холодный фарфор), соленого теста. Далее рассмотрим описанные материалы и расскажем их свойства и особенности.

Природная гли́на - мелкозернистая осадочная горная порода, пылевидная в сухом состоянии, пластичная при увлажнении. Свойства глины: пластичность, огнеупорность, спекаемость, водонепропускаемость. Природная глина имеет красновато-коричневый цвет, добывается с поверхности Земли.

Благодаря сочетанию таких свойств как пластичность и спекаемость глину начали использовать ещё в древности, когда не было бумаги и папируса, и используют до сих пор.

Глина использовалась как один из первых материалов для книг. Около 3500 лет до нашей эры люди писали на плоских глиняных табличках, которые назывались туппумы. На увлажненные таблички наносились надписи, рисунки специальными палочками, а затем таблички высушивались на солнце или обжигались в огне. Готовые таблички одного содержания укладывались в определенном порядке в деревянный ящик - получалась глиняная книга. До сих пор археологи находят древние письмена, сохранившиеся на глиняных табличках. То есть запеченая глина может храниться несколько тысяч лет. (см.Приложении 5).

Глина всегда была доступным и дешевым материалом, поэтому гончарное дело всегда было популярным ремеслом. И сейчас мы каждый день кушаем из керамических тарелок, основой которых также является глина. Из глины производят кирпичи, трубы, черепицу и проч. Глина - самый пластичный природный минерал на Земле.

Пластилин - материал для лепки, созданный в конце 19-го века. Ранее изготавливался из очищенного и размельченного порошка глины с добавлением воска, животных жиров и других веществ, которые не давали глине высохнуть и затвердеть. В настоящее время при производстве пластилина используют также высокомолекулярный полиэтилен, поливинилхлорид, каучуки и другие высокотехнологичные материалы. Окрашивается в различные цвета. Служит для выполнения небольших фигур и моделей, а также для эскизов скульптурных работ. Бывает твердый и мягкий пластилин. Но любой вид обладает высокой пластичностью, и такими недостатками, как:

· Выцветание на свету;

· Прилипание пыли;

· Расплывание на жаре;

· Загрязнение рук вследствие работы с пластилином;

· Некоторые виды пластилина горят.

Холодный фарфор

В основе холодного фарфора - любой крахмал и столярный клей. Крахмал и клей смешиваются, добавляется акриловая краска, для придания смеси нужного цвета и длительное время смесь разминается. Через некоторое время смесь становится пластичной и из нее можно лепить. На воздухе такая смесь застывает. Хранить смесь можно только в закрытом пакете, в который не проникает воздух.

Холодный фарфор не нужно запекать и застывший фарфор уже не тает и не деформируется. Но изготовление смеси требует достаточно много времени и опыта, самостоятельно сделать смесь ребенку очень сложно. Иногда смесь может сильно липнуть к рукам. А также смесь плохо храниться и перед каждой лепкой нужно готовить новые смеси.

Соленое тесто. готовится из муки, соли и воды, окрашивается с помощью пищевых красителей или красок. Оно абсолютно безопасно для детей, но даже после запекания может деформироваться. хранить тесто нельзя, перед каждой лепкой необходимо замешивать новое тесто. В отличие от современного пластилина, цвета слоеного теста не такие яркие и разнообразные.

Полимерная глина для лепки или пластик - пластичный материал для лепки небольших изделий (украшений, скульптур, кукол и др.) и моделирования, затвердевающий при нагревании до температуры 100-130°C. Иногда полимерной глиной называют самозатвердевающие массы, которые не нужно запекать. В составе полимерной глины нет природной глины, основой является поливинилхлорид(ПВХ).

Разные производители предлагают полимерную глину не только различных ярких цветов, но и с добавлением блесток, металлического отлива и проч.

Во время лепки полимерная глина абсолютно безопасна, вся продаваемая глина проходит специальные проверки. Но при запекании важно соблюдать температурный режим. Использование духового шкафа или электрической духовки не безопасно для детей, поэтому запекать необходимо только в присутствии взрослых. Но запекание происходит очень быстро (не более 15 минут). После полного остывания, фигурка становится твердой и прочной.


Исследовательская часть

Все материалы для печей и каминов делятся на 2 группы: на природные и искусственные. Давайте рассмотрим каждый из них, их особенности, свойства и область применения при :

Природные материалы

Песок – данный природный материал для строительства печей и каминов бывает нескольких видов: морской песок, речной и горный песок (овражный). Однако для постройки очагов применяется лишь горный песок, который получают при выветривании горной породы. Поверхность его зерен шероховата и имеет острые ребра, что очень «выгодно» в строительстве. Это способствует крепкому сцеплению с вяжущими составами, от чего растворы получаются цепкими, надежными и долговечными.

Нельзя применять морской или речной песок! Они имеют круглые зерна и поэтому плохо сцепляются с растворами!

Также, недопустимо использование мелкого песка, его зерна должны быть не больше 2 миллиметров!!!

Глина – это горная осадочная порода, которая состоит из очень маленьких минеральных частиц, зачастую пластинчатой формы. 0,005мм — размером. Такая пластинчатая структура глинистых материалов образует большую общую поверхность частиц, способную поглощать и задерживать до 30 процентов воды. В таком состоянии глина разбухает и становится вязко-пластичной. Когда же частицы глины высыхают, они сближаются и крепко удерживаются силой поверхностного натяжения тонюсеньких пленок воды, остающихся между ними. В результате глина затвердевает. То есть, при увлажнении происходит набухание глины и ее пластичность. А при сушке – она превращается в камневидный прочный материал, с некоторым уменьшением в объеме (усадкой).

Глина может быть как жирной (с примесями песка до 3 %), так и тощей (с примесями песка до 35 %). Цвет данного материала для печей и каминов зависти от его минерального состава, поэтому глина бывает и красных тонов, и серо-темных, серо-светлых, коричневых, и даже синих тонов.

Используют глину в основном для приготовления кладочных растворов для строительства различных очагов. Заготавливается она на берегах озер, рек, из открытых карьеров. Именно тут, под воздействием снега, дождя, мороза, под открытым небом, глина поддается полному технологическому природному, естественному процессу производства сырья для кладочных растворов-смесей. Если же нет такой возможности заготовить данное сырье, то применяется кирпич-сырец, производимый на кирпичных заводах. Та глина, которая только что вынута из закрытого карьера, не годится для кладочного раствора. Так как она обязательно должна проходить либо естественную обработку (под влиянием природы), либо обработку искусственную (машинным способом).

Вручную такая обработка невозможна! Растворы и кладка будут некачественными!

Искусственные материалы

Материалы керамические (терракотовые) – это каменные материалы, которые производятся из минералов благодаря формированию и последующему обжигу при высоких температурах.

Кирпичи полнотелые керамические – бывают белым, красным и желтым цветом. Формой прямоугольного параллелепипеда с прямыми ребрами, с углами, с ровными гранями, размером 250х120х65мм. Масса 1 кирпича полнотелого – 3,7 – 3,9кг. Теплопроводность – 0,71-0,82Вт/мК. Плотность – 1600-1900кг/м.куб. Прочность кирпичей характеризуется пределами прочности на сжатие, изгиб. Прочность обозначается марками – 300, 250, 200, 175, 150, 125, 100, 75. Морозостойкость – 50, 35, 25, 15.

При производстве кирпича очень важен правильный обжиг материала. Если кирпич будет недо-оббожон, он будет недостаточно прочным, не морозостойким и не водостойким. При недожоге кирпич имеет алый цвет. Если же он будет пере-сжен, его плотность и теплопроводность будут очень высокими. Как правило, такой кирпич имеет искаженные формы.

Для кладки очагов используются кирпичи марки 150, 125 и 100.

Кирпичи фасонные керамические – такие отделочные материалы для каминов и печей используются для декоративной отделки каминов и пр. очагов. Бывают красным, белым и желтым цветом. Фасонные керамические кирпичи производятся путем пластического формования разных геометрических форм.

Кирпичи глазурованные керамические – изготавливаются способом нанесения стекло-видного материала, т.е. глазури, на кирпич-сырец, и дальнейшего обожжения в печи. Имеют различные цвета – зеленый, коричневый, синий, матовый, белый.… Применяются и для кладки, и для облицовки печей, барбекю, каминов или мангалов.

Огнеупорный кирпич (шамотный) – предназначен для футеровок топливников печей-каминов + для их декоративных отделок. Также допускается и для , особенно банных каменок. Его размер – 240*60*115мм. Цвет либо белый, либо желтый. Огнеупорность – 1730 градусов. Прочность – 11-12,6 Мпа, его плотность – 1905-2000 кг/м.куб. Теплопроводность – 0,85-0,9 Вт/мК.

Керамовермикулит – используется для устройства теплозащитных экранов и противопожарных разделок. Его плотность – 350–1050 кг/м.куб, теплопроводность – 0,16 – 0,37 Вт/мК, прочность на сжатие – 0,50 – 2,4 Мпа.

Кремневермикулитовые плиты огнезащитные – это огнеупорные материалы для печей и каминов, которые используют в помещениях, домах, с высокой пожарной опасностью. То есть в банях, в устройствах противопожарных перекрытий, при теплоизоляции помещений в банях. Кроме этого кремневермикулитовые плиты применяют для создания интерьеров бань, каминов, и все благодаря их красивой желто-золотистой фактуре. Плотность данного материала – 300-700 кг/м.куб. Предел прочности на сжат. – 0,6-4 Мпа. Теплопроводность – 0,08-0,13Вт/мК.

Федеральное агентство по образованию

Государственное образовательное учреждение Высшего профессионального образования

Кузбасский государственный технический университет

Контрольная работа № 1

Дисциплина: Материаловедение

Выполнил: Сайгина М.В.

Кемерово, 2011

1. Камневидный материал в виде образца кубической формы, ребро которого равно 6,5 см, в воздушно-сухом состоянии имеет массу 495 г. Определить коэффициент теплопроводности (ориентировочный) и возможное наименование материала

Объем образца каменного материала:

Плотность образца каменного материала:

Коэффициент теплопроводности каменного материала:

Исходя из полученных данных, каменным материалом может быть обыкновенный камень.

Ответ:

2. Определить пористость цементного камня с В/Ц=0,62, если химически связанная вода оставляет 21% от массы цемента, плотность которого 3,1 г/см ³

1) Пористость равна:

Тогда:

Так как, то

По условию задачи:

Тогда:

Ответ:

. Как изменяются свойства строительных материалов по мере их увлажнения? Приведите примеры

Физические свойства материала характеризуют его поведение под воздействием физических факторов, моделирующих воздействие внешней среды и условия работы материала (действие воды, высоких и низких температур и т. п.).

Свойства, связанные с воздействием на материал воды, называют гидрофизическими .

Строительные материалы в процессе их транспортировки, эксплуатации и хранения подвергаются действию воды или водяных паров, находящихся в воздухе. При этом их свойства существенно изменяются. Так, при увлажнении материала повышается его теплопроводность, изменяются средняя плотность, уменьшается прочность и другие свойства, материалы становятся более тяжелыми.

Цемент, гипсовые вяжущие, пигменты, клей, и другие материалы портятся от атмосферной влаги, а влажная древесина легко поддается гниению. Поэтому при всех расчетах необходимо учитывать как влажность материала, так и его способность к поглощению влаги (водопоглощение и гигроскопичность). Во всех случаях при применении и хранении пористые строительные материалы предохраняют от увлажнения.

Гидрофильность и гидрофобность- свойства поверхности материала по отношению к воде. Мерой гидрофильности служит энергия связи молекул воды с поверхностью вещества, из которого состоит материал.

Гидрофильные (от греч. Phileo-люблю) материалы имеют высокую степень связи с водой. На гидрофильной поверхности капля воды растекается, а капиллярные поры гидрофильных веществ способны втягивать воду и поднимать ее на значительную высоту.

Гидрофобные (от греч. Phobos-страх) материалы имеют низкую степень связи с водой. На их поверхности капли воды почти не растекаются, а в капиллярные поры вода проникает на минимальную глубину или вообще не проникает.

Для снижения смачиваемости материала и поглощения им воды можно изменять характер его поверхности. Особенно эффективны в роли гидрофобизаторов кремнийорганические вещества. Так, кирпич или бетон, обработанные гидрофобизирующей кремнийорганической жидкостью (ГКЖ), перестают поглощать воду, и более того, вода скатывается с поверхности таких гидрофобизированных материалов «как с гуся вода».

Гигроскопичность- способность материала изменять свою влажность при изменении влажности воздуха. При увеличении влажности воздуха гигроскопичный материал поглощает и конденсирует водяной пар на своей поверхности, в том числе и на поверхности пор. Этот процесс называют сорбцией. Гигроскопичность отрицательно сказывается на качестве строительных материалов. Так, цемент при хранении под влиянием влаги воздуха комкуется и снижает свою прочность. Весьма гигроскопична древесина, от влаги воздуха она разбухает, коробится. Чтобы уменьшить гигроскопичность деревянных конструкций и предохранить их от разбухания, древесину покрывают маслеными красками и лаками, пропитывают полимерами, которые препятствуют проникновению влаги в материал. Капиллярное всасывание - свойство пористо-капиллярных материалов поднимать воду по капиллярам. Оно вызывается силами поверхностного натяжения, возникающими на границе раздела твердой и жидких фаз. Капиллярное всасывание характеризуют высотой поднятия уровня воды в капиллярных материалах и количеством поглощенной воды и интенсивность всасывания. Когда фундамент находится во влажном грунте, грунтовые воды могут подыматся по капиллярам и увлажнять низ стены здания. Во избежание сырости в помещении устраивают слой гидроизоляции, отделяющий фундамент от стены. С увеличением капиллярного всасывания снижается прочность, стойкость к химической коррозии и морозостойкость строительных материалов.

Водопоглощение - свойство материала при непосредственном соприкосновении с водой впитывать и удерживать ее в своих порах. Водопоглощение выражают степенью заполнения объема материала водой или отношением количества поглощенной воды к массе сухого материала.

У высокопористых материалов водопоглощение по массе может превышать пористость, но водопоглощение по объему всегда меньше пористости, так как вода не проникает в очень мелкие поры, а в очень крупных не удерживается. Водопоглощение плотных материалов равно нулю (стекло, сталь, битум) Водопоглощение отрицательно сказывается на других свойствах материалов: понижается прочность и морозостойкость, материал набухает, возрастает его теплопроводность и увеличивается плотность.

Паропроницаемость - способность материала пропускать водяные пары при наличии разницы абсолютной влажности воздуха (парциального давления пара в воздухе) по обе стороны материала. Пар стремится пройти через материал в ту сторону, где его парциальное давление ниже (обычно из теплого помещения в холодное). В одних случаях нужна высокая паропроницаемость (например, материал стены должен «дышать»); в других желательно отсутствие паропрони-цаемости (теплоизоляция не должна отсыревать). Необходимая степень паропроницаемости конструкции достигается правильным выбором материалов и их взаимным расположением в конструкции.

Влагоотдача - способность материала терять находящуюся в его порах воду. Влагоотдачу определяют количеством воды, испаряющейся из образца материала в течение суток при температуре воздуха 20 °С и относительной влажности 60 %. Влагоотдачу учитывают, например, при сушке стен зданий и уходе за твердеющим бетоном. В первом случае желательна быстрая влагоотдача, а во втором, наоборот, замедленная.

Водопроницаемост ь - свойство материала пропускать через себя воду под давлением. Степень водопроницаемости в основном зависит от строения пористости материала. Чем больше в материале открытых пор и пустот, тем больше его водопроницаемость. Водопроницаемость характеризуется коэффициентом фильтрации (м/ч) - количеством воды (в м3), проходящей через материал площадью 1 м2, толщиной 1м за 1 ч при разности гидростатического давления на границах стенки 9,81 Па. Чем ниже коэффициент фильтрации, тем выше марка материала по водонепроницаемости. Водонепроницаемыми являются плотные материалы (гранит, металлы, стекло) и материалы с мелкими замкнутыми порами (пенопласты, экструдированный полистирол).

Для гидроизоляционных материалов важна оценка не водопроницаемости, а их водонепроницаемости, которая характеризуется или временем, по истечении которого появляется просачивание воды под определенным давлением через образец материала (мастика, гидроизол), или максимальным давлением воды, при котором она еще не проходит через образец материала за время испытания (специальные строительные растворы).

Морозостойкость - свойство материалов в насыщенном водой состоянии выдерживать многократное число циклов попеременного замораживания и оттаивания без видимых признаков разрушения и без значительного снижения прочности и массы. Морозостойкость - одно из основных свойств, характеризующих долговечность строительных материалов в конструкциях и сооружениях. При смене времен года некоторые материалы, подвергаются периодическому замораживанию и оттаиванию в обычных атмосферных условиях, разрушаются. Это объясняется тем, что вода, находящиеся в порах материала, при замерзании увеличивается в объеме примерно на 9…10 %; только очень прочные материалы способны выдерживать это давление льда (200 МПа) на стенки пор.

Высокой морозостойкостью обладают плотные материалы, которые имеют малую пористость и закрытые поры. Материалы пористые с открытыми порами и соответственно с большим водопоглащением часто оказываются не морозостойкими.

4. Наличие каких минералов в составе камня придает ему прочность при ударном воздействии нагрузки

теплопроводность портландцемент термозит пористость

Свойство камня разрушаться под ударной нагрузкой называется хрупкостью. Хрупкость каменного материала зависит от минералогического состава, характера сцепления между отдельными минералами, цементирующего вещества, его состояния, строения и сложения породы. Наиболее хрупкие породы: кварцит, некоторые песчаники и изверженные породы стекловатого строения. Хрупкость является отрицательным свойством каменного материала, применяемого для устройства дорожной одежды. Обратная величина хрупкости называется вязкостью. Ударная вязкость (или сопротивление удару) - способность материала сопротивляться деформированию или разрушению при ударе. Сопротивление удару важно для каменных материалов, которые в процессе эксплуатации в конструкциях подвергаются динамическим воздействиям (например, в дорожных покрытиях, покрытиях полов промышленных зданий и т. п.).

При рассмотрении разнообразных представителей минералов и горных пород в отношении каждого из них была установлена зависимость его свойств от состава и структуры.

По составу породы могут быть мономинеральными и полиминеральными. Качественные характеристики первых в основном определяются свойствами их породообразующего минерала: формой и размером его частиц, дефектами структуры, типом химической связи между частицами, макро- и микропористостью и т. п.

В зависимости от твердости минералов, входящих в состав горной породы и в значительной степени определяющих ее свойства, камни условно делятся на три группы:

прочные - кварциты, граниты, габбро;

средней прочности - мрамор, известняки, травертины;

низкой прочности - рыхлые известняки, туфы.

Кварцитам, например, передаются свойства их породообразующего компонента кварца: высокие твердость, плотность и механическая прочность, малая деформативность (хрупкость), раковистость излома, высокая стойкость к химическому выветриванию и др.

Аналогичным образом на физико-механических свойствах известняков отражаются характерные особенности породообразующего кальцита: сравнительно легкая растворимость в воде, низкая твердость и совершенная спайность, с которыми непосредственно связана пониженная прочность этих пород. Подобное влияние упомянутых свойств кальцита проявляется также на свойствах мраморов, являющихся метаморфизованными разновидностями известняков.

Особенно отчетливо прослеживается негативное влияние совершенной спайности кальцита на прочность крупнокристаллических разновидностей карбонатных пород химического генезиса. Снижение их прочности при механическом воздействии объясняется прежде всего разрушением частиц кальцита по плоскостям спайности, а также по границам их контакта друг с другом.

С увеличением пористости, а также с появлением неплотностей в контактах и некоторых других структурных дефектов, неизбежно возникающих при формировании мономинеральных пород, их упругие и прочностные свойства интенсивно снижаются. Аналогичные явления происходят в полиминеральных породах, когда превалирующий количественно породообразующий минерал оказывает наиболее заметное влияние на формирование определенных свойств породы. У магматических пород, например гранитов, с увеличением содержания кварца, имеющего очень высокий предел прочности при сжатии (около 2000 МПа), повышается механическая прочность. Наоборот, увеличение количества полевых шпатов и слюды в этих породах снижает их прочность, обычно составляющую до 200 МПа для мелкозернистых и до 120... 140 МПа для крупнозернистых их разновидностей. Это происходит вследствие того, что полевой шпат не отличается высоким пределом прочности при сжатии, аналогично кварцу (всего около 170 МПа), а слюда с присущей ей высокой спайностью и способностью образовывать плоскости скольжения способствует механическому разрушению гранита с появлением внутренних скалывающих напряжений. При небольшом количестве слюды или полной ее заменой роговой обманкой гранит приобретает повышенные вязкость и прочность (в том числе и на ударную нагрузку). С повышением пористости у выветрелых и одресвелых гранитов их прочность быстро снижается, достигая 80... 60 МПа и ниже.

Что является сырьем для производства портландцемента и какова технология его получения по мокрому способу

Портландцемент - наиболее распространённый в современном строительстве вид цемента. Получают портландцемент тонким измельчением клинкера с гипсом (3-7%); допускается введение в смесь активных минеральных добавок (10-15%). Клинкер - продукт обжига (до полного спекания) искусственной сырьевой смеси, состоящей приблизительно из 75% карбоната кальция (обычно известняка) и 25% глины. Обжиг сырья ведут преимущественно во вращающихся печах при 1450-1500°С. Свойства портландцемента зависят главным образом от состава клинкера и степени его измельчения. Важнейшее свойство портландцемента - способность твердеть при взаимодействии с водой. Оно характеризуется маркой портландцемента, определяемой по прочности на сжатие и изгиб стандартных образцов цементно-песчаного раствора после 28 суток твердения во влажных условиях. Сырьем для производства портландцемента служат: известковые, мергелистые, глинистые породы и различные добавки - шлак, бокситы и др. Для получения портландцемента применяют, главным образом, карбонатные и глинистые породы. Кроме того, в качестве сырьевых материалов можно использовать и другие природные виды сырья, а также искусственные материалы, получаемые в виде отходов тех или иных производств. К ним относятся основные и кислые доменные шлаки, отходы, получаемые при производстве глинозема, белитовый (нефелиновый) шлам, отходы от переработки горючих сланцев, зола и др. Помимо основных сырьевых материалов в производстве портландцемента используют и различные корректирующие добавки.

Производство цемента "мокрым" способом.

При подготовке сырьевой смеси по мокрому способу в большинстве случаев используют твердый карбонатный (известняк) и мягкий глинистый (глина) компоненты.

Известняк как более твердый материал предварительно подвергается дроблению, а пластичная глина измельчается в присутствии воды в специальных аппаратах (болтушках или мельницах-мешалках). Окончательное тонкое измельчение с получением однородной смеси известняка, глиняного шлама и корректирующих добавок происходит в шаровых трубных мельницах. Хотя компоненты дозируют в мельницы в заданном соотношении, из-за колебаний их химико-минералогических характеристик не удается получить в мельнице шлам состава, отвечающего установленным параметрам. Поэтому необходима специальная технологическая операция по корректировке его состава. После проверки соответствия состава шлама заданным показателям его подают на обжиг во вращающуюся печь, где завершаются химические реакции, приводящие к получению клинкера. Затем клинкер охлаждается в холодильнике и поступает на склад, где также хранятся гипс и активные минеральные добавки. Эти компоненты предварительно должны быть подготовлены к помолу. Активные минеральные добавки высушивают до влажности не более 1 %, гипс подвергают дроблению. Совместный тонкий размол клинкера, гипса и активных минеральных добавок в шаровых трубных мельницах обеспечивает получение цемента высокого качества. Из мельниц цемент поступает в склады силосного типа. Отгружают его либо навалом (в автомобильных и железнодорожных цементовозах), либо упакованным в многослойные бумажные мешки.

При приготовлении шлама из двух мягких (мела и глины) и двух твердых компонентов (известняка и глинистого мергеля) последовательность основных технологических операций не меняется. Однако особенности свойств измельченного сырья и стремление к выбору наименее энергоемких технических решений обусловливают существенные отличия способов измельчения компонентов.

При использовании двух мягких компонентов технологическая схема позволяет эффективно использовать способность мягкого сырья распускаться в воде. Применение мощного оборудования для предварительного измельчения сырья (например, мельниц "Гидрофол") позволяет отказаться от его дробления. Однако на стадии предварительного измельчения часть сырья остается недоизмельченной, и получение шлама также должно завершаться в шаровой трубной мельнице.

При использовании двух твердых компонентов повышенная твердость глинистого сырья обусловливает необходимость его предварительного дробления. Тонкое измельчение всех компонентов происходит в одну стадию в шаровой мельнице. В водной среде облегчается измельчение материалов и улучшается их перемешивание. В результате снижается расход электроэнергии (при мягком сырье экономия может достигать 36 МДж/т сырья) и получается более однородная шихта, что в конечном счете приводит к росту марки цемента. Кроме того, при мокром способе упрощается транспортировка шлама и улучшаются санитарно-гигиенические условия труда. Сравнительная простота мокрого способа и возможность получения высокомарочной продукции на сырье пониженного качества обусловили его широкое распространение в цементной промышленности нашей страны. В настоящее время этим способом выпускается около 85 % клинкера. В то же время введение в шлам значительного количества воды (30-50 % массы шлама) обусловливает резкое повышение расхода теплоты на ее испарение. В результате расход теплоты при мокром способе (5,8-6,7 МДж/кг) на 30-40 % выше, чем при сухом способе. Кроме того, при мокром способе возрастают габариты и соответственно металлоемкость печей.

6. Как образовались глины в природе и каковы их основные минеральные компоненты

Глина - это мелкозернистая осадочная горная порода, пылевидная в сухом состоянии, пластичная при увлажнении.

Происхождение глины.

Глины образовались в результате выветривания изверженных полевошпатных горных пород. Процесс выветривания горной породы состоит из механического разрушения и химического разложения. Механическое разрушение происходит в результате воздействия переменной температуры, воды и ветра, химическое разложение - в результате воздействия различных реагентов, например воды и углекислоты на полевой шпат, когда образуется минерал каолинит.

Наиболее чистые глины, состоящие преимущественно из каолинита, называют каолинами. Обычные глины отличаются от каолинов химическим и минералогическим составом, так как помимо каолинита они содержат кварц, слюду, полевые шпаты, кальцит, магнезит и др.

В целом по происхождению и составу все глины подразделяются на осадочные , образовавшиеся в результате переноса в другое место и отложения там глинистых и других продуктов коры выветривания, и остаточные , возникающие в результате выветривания различных горных пород на суше, и в море в результате изменения лав, их пеплов и туфов.

По происхождению осадочные глины делятся на:

. морские глины, отложившиеся на дне моря:

прибрежно-морские - образуются в береговых зонах (зонах взмучивания) морей, незамкнутых заливах, дельтах рек. Характеризуются часто неотсортированностью материала. Быстро переходят в песчанистые и грубозернистые разновидности. Замещаются песчаными и карбонатными отложениями по простиранию.

лагунные - образуются в морских лагунах, полузамкнутых с повышенной концентрацией солей или опресненных. В первом случае глины неоднородны по гранулометрическому составу, недостаточно отсортированы и встречаются совместно с гипсом или солями. Глины опреснённых лагун обычно тонкодисперсные, тонкослоистые, содержат включения кальцита, сидерита, сульфидов железа и др. Среди этих глин встречаются огнеупорные разновидности.

шельфовые - образуются на глубине до 200 м. при отсутствии течений. Характеризуются однородным гранулометрическим составом, большой мощностью (до 100 м. и более).

2. континентальные глины , образовавшиеся на материке.

- делювиальные - характеризуются смешанным гранулометрическим составом, резкой его изменчивостью и неправильной слоистостью (иногда отсутствует).

- озёрные, с однородным гранулометрическим составом и тонкодисперсные. В таких глинах присутствуют все глинистые минералы, но каолинит и гидрослюды, а также минералы водных окислов Fе и Аl преобладают в глинах пресных озёр, а минералы монтмориллонитовой группы и карбонаты - в глинах соляных озёр. К озёрным глинам принадлежит лучшие разновидности огнеупорных глин.

- пролювиальные, образованные временными потоками. Характеризуются очень плохой сортировкой.

- речные - развиты в речных террасах, особенно в пойме. Обычно плохо отсортированы. Быстро переходят в пески и галечники, чаще всего неслоистые.

Глины остаточные - глины, возникающие в результате выветривания различных горных пород на суше, и в море в результате изменения лав, их пеплов и туфов. Вниз по разрезу остаточные глины постепенно переходят в материнские породы. Гранулометрический состав остаточных глин изменчив - от тонкодисперсных разновидностей в верхней части залежи до неравномерно зернистых - в нижней. Остаточные глины, образовавшиеся из кислых массивных пород, не пластичны или мало пластичны; более пластичны глины, возникшие при разрушении осадочных глинистых пород.

Глины состоят из различных окислов, свободной и химически связанной воды и органических примесей. В число окислов входят: глинозем, кремнезем, окись железа, окись кальция, окись натрия, окись магния и окись калия.

Глинозем оказывает наибольшее влияние на свойства керамических изделий и является важнейшей составной частью глины. Чем выше содержанке глинозема, тем выше пластичность и огнеупорность глины. Кремнезем является основным (по количеству) окислом, образующим глины - количество его достигает 60-78%.

Помимо окиси железа в состав глин входят закись железа FeO, пирит FeS2 и другие модификации железа. От количества железа и его модификации зависит цвет керамических изделий и температура спекания черепка. Наиболее плотный черепок получается при наличии, в глине закиси железа.

Содержание окиси кальция (в виде карбонатов и сульфатов кальция) в некоторых глинах достигает 25%. Эти соединения кальция сокращают период спекания глин, что ухудшает условия обжига керамических изделий. Такое же влияние на обжиг изделий оказывает и окись магния, находящаяся в глинах в виде карбоната MgCO3 и доломита MgCO3-CaCO3. В незначительных количествах в глинах встречается в виде примесей сернистый ангидрид SO3. Однако если он находится в соединениях с магнием или натрием, то он может вредно влиять на прочность изделий. Полезными примесями можно считать окись калия и окись натрия, которые служат плавнями, понижающими температуру обжига изделий и придающими им большую прочность. Окиси различных металлов, например марганца, титана и др., содержатся в очень небольших количествах и мало влияют на свойства глин. Вообще на свойства глин влияет не только количественное содержание тех или иных окислов, но и их соотношение.

Примеси оказывают большое влияние на свойства глин. Так, при повышенном содержании свободного кремнезема, не связанного с А12О3 в глинистые минералы, уменьшается связующая способность глин, повышается пористость обожженных изделий и понижается их прочность.

В составе глин также присутствует вода, которая содержится в глинах как в виде свободной, так и химически связанной, т. е. входящей в состав глинообразующих минералов. Наличие в глине тех или иных минералов дает возможность судить о количестве химически связанной воды и, следовательно, об отношении к сушке и обжигу. От содержания органических веществ, находящихся в глине в виде остатков растений и гумусовых веществ, также зависят потери глин при обжиге и, следовательно, усадка изделий. Кроме того, повышенное количество органики снижает огнеупорность глин.

7. Что такое термозит, каковы его свойства и для каких целей применяется в строительстве

Материалы и изделия из шлаковых расплавов являются разновидностью изделий, получаемых из расплавленных горных пород. Огненно-жидкие шлаки металлургической промышленности являются ценным сырьем для получения различных материалов и изделий. Производство изделий из шлаковых расплавов выгодно и экономически, поскольку для их получения не требуется дополнительных затрат топлива, отпадает необходимость в специальных плавильных печах, значительно снижаются удельные капитальные вложения и себестоимость единицы продукции. Однако для надлежащего качества выпускаемых изделий шлаковые расплавы нуждаются в обогащении специальными добавками, что несколько усложняет производство изделий. Из огненно-жидких шлаков получают изделия для покрытий полов промышленных предприятий, облицовочные плитки, используемые в коррозионных средах, тюбинги для крепления горных выработок, легкие материалы - термозит, шлаковую вату и др.

Термозит представляет собой ячеистый материал, получаемый в результате вспучивания расплавленного шлака при быстром его охлаждении. Объемный вес термозита колеблется от 300 до 1100 кг/м3 в зависимости от размера кусков и степени вспучивания. Щебень из термозита является хорошим заполнителем для получения легких термозитобетонов. При заливке расплавленного шлака в специальные формы можно, получать изделия различного профиля и конфигурации. Для уменьшения напряжений и предотвращения образования трещин в период кристаллизации и последующего охлаждения изделий в формы перед заливкой укладывается стальная арматурная сетка.

Термозит - шлаковая пемза. Шлаковая пемза является искусственным пористым материалом. Благодаря своим универсальным физико-механическим и теплотехническим свойствам шлаковая пемза применяется:

как заполнитель в лёгких бетонах,

в теплоизоляционно-конструкционных и высокопрочных мелкозернистых бетонах;

как утеплитель для кровельно-промышленных и гражданских зданий, тёплых полов;

в смесях для дорожных одежд;

в виде тонкомолотых добавок в цементные и асфальтовые бетоны;

в производстве минераловатных изделий.

Шлаковая пемза выпускается двух фракций: 0-5 мм и 5-20 мм, отгружается потребителям по ГОСТ 9757 со следующими характеристиками:

насыпной плотностью следующих марок 600-1000;

прочностью П75-П150;

пористостью - 40-45%;

коэффициентом формы зёрен 1,8-2,0;

устойчивой структурой против силикатного распада;

морозостойкостью Мрз 15 и выше.

Шлаковая пемза относится к первому классу строительных материалов в соответствии с ГОСТ 30108-94, может использоваться в строительстве без ограничений.

Термозит как субстрат для разведения комнатных растений неидеален, так как обладает следующими недостатками:

частицы термозита имеют острые края, что делает его небезопасным в применении,

характеризуется высокой щелочностью (до 43% СаО).

Оба недостатка можно устранить. В первом случае к термозиту рекомендуется добавить 10% кварцевого песка. Песок вводят в субстрат перед обработкой.

Во втором случае, как и вулканические породы, термозит подвергают предварительной обработке с целью удаления из него ядовитых веществ (соединений серы и извести).

Впервые в конце 1960-х годов термозит начали применять для промышленных целей в таких областях, как различные типы свай, шпунтованные сваи, анкерные сваи, Вертикальные Опорные Элементы (ВОЭ), трубы, трубопроводы, границы зон облучения и т.п.

Применение изготовляемого термозита получило широкое признание в ряде мест континентальной части Соединенных Штатов в качестве альтернативного средства забутовки вокруг опор электропередач, свай и анкерных опор. Сваи и ВОЭ крепятся в стволах, пробуренных обычным способом, а затем заранее отмеренное количество термозита заливается или впрыскивается в стволы. Жидкий термозит немедленно начинает реагировать и расширяется до 15 раз по сравнению с исходным объектом, а затем затвердевает. В течение десяти минут свая или ВОЭ дают усадку и их можно освободить.